CS14

CS14

14 mm rotary position sensor with 360° mechanical rotation angle (electrical angle up to 330°).
Two configurations available:

- Standard, 15.000 turns, combinable with detents.
- Long life, up to 1 million turns.

Our 360° rotary sensor, CS14, can be manufactured in a wide range of possibilities regarding: resistance, tolerance, tapers, click effect (up to 50), positioning of the wiper, housing and rotor color.

Standard taper is linear. ACP can study other special tapers, (even cut tracks, step curves with areas of constant values, etc) as well as more strict linearity.

Through-hole and SMD configurations are available. Terminals and collector are manufactured in tinned brass although versions with steel terminals can be studied under request. Terminals for through-hole models can be provided straight and crimped, which helps hold the component to the PCB during soldering.

CS14 has plastic housing and Ingress Protection rating type IP 54 (high level protection against dust and also against water splashing), according to IEC 60529. Plastic materials can be self-extinguishable according to UL 94 V-0 under request.

Thumbwheels and shafts can be provided either separately or already inserted in the sensor.

Applications

Control, function selector, position sensor for household appliances, automotive and industrial.

CS14 HOW TO ORDER

EXAMPLE: CS14NV15-10KA3030 LV15 RSN LN3\% WT-14015-NE-V0

Customized products: A drawing is requested when ordering a customized product. Series, rotor, model and total resistive value are indicated before the code that includes all special specifications. Example: CS14NV15-10K CODE C00111

4 - Connector - Only available with HP model	
SHORT latching shape and groove at INITIAL terminal side.	SI
SHORT latching shape and groove at FINAL terminal side.	SF
LONG latching shape and groove at INITIAL terminal side.	LI
LONG latching shape and groove at FINAL terminal side.	LF

$\mathbf{5}$ - Packaging	Trough-hole	SMD models
Bulk	(blank)... ${ }^{(1)}$	(blank).... ${ }^{(1)}$
T\&R (Tape and 13" reel)	(N.A.) ${ }^{(2)}$	T\&R
T\&R (Tape and 15" reel)	(N.A.) $^{(2)}$	T\&R15

Big Box: See page 9
(1) If blank, bulk packaging is implied. (2) N.A., Not Applicable: Tape and Reel packaging is only available for SMD terminals

6 - Resistance value

$1 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} 2 \Omega$	$4 \mathrm{~K} 7 \Omega$	$5 \mathrm{~K} \Omega$	$10 \mathrm{~K} \Omega$ (standard) ...	$4 \mathrm{M} 7 \Omega$	$5 \mathrm{M} \Omega$
1 K	2 K	2 K 2	4 K 7	5 K	10 K (standard)...	4 M 7	5 M

7-Resistance law / taper (see also page 10)

Lin - Linear	A		
Log - Logarithmic	B		
Antilog - Antilogarithmic	C		
- Special tapers have codes assigned:	CODE YXXXXX		
8 - Tolerance (see also page 10)			$\pm 5 \%$
$\pm 30 \%$	$+50 \%,-30 \%$	$\pm 20 \%$	$\pm 10 \%$
3030	5030	2020	1010

9 - Operating Life (Turns)

Standard (15.000 turns) (others on request).	LV15
Long life: LV + number of turns. ex: LV100 for 100.000 turns, LV150, LV1M	LVXXX: ex: LV100

10 - Cut Track - Open circuit
CS14 already has an open circuit area at the base of the potentiometer (between 330°
and 0°). Additional cut tracks can be studied on request.
11 - Detents (DT) (Available for up to $\mathbf{1 5 . 0 0 0}$ turns)
X number of detents: ex. 16 detents
Special detents are available on request: If you need to assign a voltage value to each detent, please inquire.
12 - Terminals (THT)
SNAP IN P
SNAP IN R
Shorter tip of terminal, TPXX, where XX is tip length (under request)
Steel Terminals
$\mathbf{1 3}$ - Housing
Color: For colors other than standard: -See color chart below-

Rotors N, T, Z	RSN
All others rotors:	(leave blank)
Color: For colors other than standard: -See color chart below-	RT-color; ex., blue: RT-AZ

* Self extinguishable property V0 for housing and rotor
Not VO (by default) (leave blank)

Housing and rotor VO VO
Only housing V0 CJ-V0

15 - Wiper
Wiper position (Standard: $50 \% \pm 15^{\circ}$) \quad (leave blank)

Initial or CCW	PI
Final or CW	PF
Others: following clock positions. Ex at 3 hours: P3H	$\mathrm{PXH}, \mathrm{ex:} \mathrm{P3H}$

Wiper torque

Standard for 15.000 turns: $<2.5 \mathrm{Ncm}$, detents $<3.5 \mathrm{Ncm}$	(leave blank)
Special low torque for 15.000 turns $<1.5 \mathrm{Ncm}$	PGB
Standard for >15.000 turns $<1.5 \mathrm{Ncm}$	(leave blank)

Stronger or softer feeling than above, available on request.

$\mathbf{1 6}$ - Linearity	(leave blank)
Standard, according to IEC 190	LNx\%, ex: LN3\%
Independent linearity controlled and below x\%. Ex: 3\%	LAx\%, ex: LA2,5\%
Absolute linearity controlled and below x\%. Ex: 2,5\%	

17- Operating temperature

$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	(blank)
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	$\mathrm{T}^{\mathrm{a} D}$
$-25^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$	$\mathrm{T}^{\mathrm{a} B}$

18 - Potentiometers with assembled accessories

Assembled from terminal side	WT
Assembled from collector side	WTI
Accessory Reference	$-X X X X X$ ex: 14117
See list of shafts and thumbwheels available	
Color of shaft or thumbwheel	$-Y Y$ ex: white: BA
Non self-extinguishable. Self-extinguishable according to standard	(leave blank) -VO
UL 94 (-VO in box 17 modifies only the accessory, please, note.)	

For ordering spare accessories: Accessory reference - color- flammability.
Ex. 14117-AZ-VO is a blue self-extinguishable 14117 thumbwheel $X X X X-Y Y-$ VO
Color chart for rotor, housing and accessories

Black $^{(1)}$	White	Neutral	Transp.	Red	Green	Yellow	Blue	Grey	Brown
NE	BA	IN	TA	RO	VE	AM	AZ	GS	MR
(1) black is not an option for housings.									

Rotors

N is the standard rotor for CS14, but the following options are also available. Rotors are drawn in their standard positioning, 50% of rotation. Alternative delivery positioning can be requested.
Accessories in this catalogue are designed for N, Z and T rotors, unless otherwise stated. Other rotor styles, on request.

*Please, note that for more than 15.000 turns (up to 1.000 .000 turns) the following rotors are available: D, F, N, T, Y, Z.

H0, H2,5, H5, V12,5, V15, V15...CFF, V12,5x5, VSMD, VSMD...CY. For other models, such as those shown for the CA14, please inquire.

Position indicating notch included on all LV15 rotors, except types M and P.

The Standard taper is linear (A). Log (B) and Antilog (C) tapers are also available, as well as special tapers according to customer specifications. See an example on the application described on page 11.

Connector

ACP offers the possibility to turn one CS14 standard into a pluggable version. Thanks to an external RAST 2,5 card edge connector in which terminals are embedded, customer can transmit the output signal from the potentiometer to the electronic module. The three pins of the potentiometer (the collector and the two terminals) are fitted into a $1,55 \mathrm{~mm}$ thick plastic part with a pitch of $2,5 \mathrm{~mm}$. Extended temperature versions covering a range from $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ are available for applications where the working temperature interval exceeds the standard limits of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The self-extinguishable version of the plastic parts, V 0 , can be supplied under request.

A typical application would be as feedback position sensor of the cooking style selector for kitchen ovens.
ACP is able to supply different kind of connectors:

Potentiometers
with detents
ACP's patented detent (DT) feature is especially suitable for control applications where the end user will turn a knob inserted in the potentiometer. Detents can be used to add a click feeling to the turning of the potentiometer or to control the position in which the wiper is placed, assuring a particular output value with a narrow tolerance.

Detents can be light or strong, or even a combination of different feelings. They can be evenly distributed along the angle (standard) or tailored to match customers' request. They can also be combined with special tapers: constant value areas, open circuit zone, different slopes, etc. One common example is a potentiometer with detents and matching non-overlapping voltage values in specific angular positions, used to feed in a voltage value to a microprocessor.

Examples of some potentiometers with detents:

16DT Standard
17DT (Max. non overlapping V)

Our patented design with two wipers gives more stable electrical parameters, improved reliability and Contact Resistance Variation (CRV), as well as narrower tolerances for detent positioning.
For potentiometers with detents, mechanical life is also 15.000 turns if no additional turns are mentioned. Please, indicate the number of turns needed. When needing a special number of detents or matching taper, a drawing is kindly requested.

By default, terminals are always straight, as shown on the "models" section. ACP can provide crimped terminals (with snap in, "SNP" or "SNR"), to better hold the component to the PCB during the soldering operation.
SNP

Also, there is an option of having shorter terminal tips.

Standard Terminal

Shorter terminal, TPXX (under request)

$\underset{\times 1 \sqrt{x}}{x+1]}$
Possibilities
for insertion
of accessories
Accessories can be mounted on potentiometers through either the front side (WT) or the metal collector side (WTI). For the specific angular position of shafts with planes, a drawing with the exact position is requested.

Shafts

Shafts are available in different colors (color chart in "how to order" section) and with self-extinguishable property, according to UL 94 V-0, under request. ACP can study special shaft designs.
Shafts can be sold separately or already mounted on the potentiometer.
When a shaft is mounted on a potentiometer, the distance from the top of the potentiometer to the top of the shaft is marked with " L " in the table below, as shown in the drawing:

14073

14081

(4i4)

14084

14117

14187
14250

Thumbwheel

Thumbwheels are available in different colors (color chart in "how to order" section) and with self-extinguishable property according to UL 94 V -0, under request.
Thumbwheels can be mounted on the potentiometers at ACP or sold separately. ACP can study special thumbwheel designs.
14003

Bulk packaging:

CS14 model	With shaft or thumbwheel inserted?	Pieces per small box ($150 \times 100 \times 70$)	Pieces per bigger box ($250 \times 150 \times 70$) add CG at the end of the product description
$\begin{gathered} \text { HO - HP - H2,5-H5 - } \\ \text { V12,5 V12,5x5 - V15 } \\ \text { V15CFF } \end{gathered}$	None, only potentiometers.	200	700
	$\begin{gathered} 14003,14117,14042 \\ 14056,14065 \end{gathered}$	100	400
	$\begin{gathered} 14008,14015,14066,14067, \\ 14072,14073,14081,14084, \\ 14187,14250 . \end{gathered}$	75	To be determined.
Tape \& Reel packaging:	With thumbwheel inserted?	13" Reel, with 24mm width tape	15" Reel, with 24 mm width tape
VSMD (on request*)	None, only potentiometers.	500 pcs per reel, 16 mm step between cavities.	800 pcs per reel, 16 mm step between cavities.
	14003	450 pcs per reel, 16 mm step between cavities.	To be determined.
VSMD... CY (on request*)	None, only potentiometers.	350 pcs per reel, 20 mm step between cavities.	500 pcs per reel, 20 mm step between cavities.
	14003	To be determined.	To be determined.

Sticker on component available on request.

VSMD-T\&R

VSMD-T\&R...WT-14003

VSMD-T\&R...CY
VSMD-T\&R...CY WT-14003

$13^{\prime \prime}$ Reel

15" Reel

	CS14 Through-hole	CS14 SMD (upon availability)
Range of resistance values* Lin (A) Log (B) Antilog (C)	$\begin{gathered} 1 \mathrm{~K} \Omega \leq R n \leq 5 \mathrm{M} \Omega \\ 10 \mathrm{~K} \Omega \leq R n \leq 2 \mathrm{M} 2 \Omega \end{gathered}$	$\begin{gathered} 1 \mathrm{~K} \Omega \leq \mathrm{Rn} \leq 1 \mathrm{M} \Omega \\ 10 \mathrm{~K} \Omega \leq \mathrm{Rn} \leq 1 \mathrm{M} \Omega \end{gathered}$
$\begin{aligned} & \text { Tolerance }{ }^{\star} \\ & \text { (Please, inquire for }>100 \mathrm{~K} \text { turns) } \\ & 100 \Omega \leq R n \leq 100 \mathrm{~K} \Omega \\ & 100 \mathrm{~K} \Omega<R \mathrm{Rn} \leq 1 \mathrm{M} \Omega \text { : } \\ & 1 \mathrm{M} \Omega<R \mathrm{n} \leq 5 \mathrm{M} \Omega \text { : } \\ & R \mathrm{Rn}>5 \mathrm{M} \Omega \text { : } \end{aligned}$	$\begin{gathered} \pm 30 \% \\ \pm 30 \% \\ \pm 30 \% \\ +50 \%,-30 \% \text { (out of range) } \\ \hline \end{gathered}$	$\begin{aligned} & \pm 30 \% \\ & \pm 40 \% \\ & \pm 50 \% \end{aligned}$
Variation laws	Lin (A). Other tapers available on request	
CRV - Contact Resistance Variation (dynamic)	Lin (A) Electrical Angle $330^{\circ} \pm 20^{\circ} \leq 3 \%$ Rn. Other tapers, please inquire	
CRV - Contact Resistance Variation (static)	Lin (A) Electrical Angle $330^{\circ} \pm 20^{\circ} \leq 5 \%$ Rn. Other tapers, please inquire	
Maximum power dissipation** Lin (A)	at $50^{\circ} \mathrm{C}, 0.15 \mathrm{~W}$	
Maximum voltage Lin (A)	250VDC	
Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ (up to $120^{\circ} \mathrm{C}$, inquiry)	
Angle of rotation (electrical)	$330^{\circ} \pm 20^{\circ}$	
$\begin{aligned} & \text { Temperature coefficient } \\ & \qquad 100 \Omega \leq R \mathrm{R} \leq 10 \mathrm{~K} \Omega \\ & 10 \mathrm{~K} \Omega<\mathrm{Rn} \leq 5 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & +200 /-300 \mathrm{ppm} \\ & +200 /-500 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & +200 /-500 \mathrm{ppm} \\ & +200 /-1000 \mathrm{ppm} \end{aligned}$

* Out of range ohm values and tolerances are available on request, please, inquire.
** Dissipation of special tapers will vary, please, inquire.

Mechanical
Specifications
CS14 Through-hole and SMD

Resistive element	Carbon technology
Angle of rotation (mechanical)	360°
Wiper standard delivery position	$50 \% \pm 15^{\circ}$
Max. push/pull on rotor	$35 \mathrm{~N} / 50 \mathrm{~N}$
Wiper torque*	For 15.000 turns $<2.5 \mathrm{Ncm}$, detents $<3.5 \mathrm{Ncm}$
For >15.000 turns $<1.5 \mathrm{Ncm}$	

* Stronger or softer torque feeling is available on request.
results
The following typical test results (with 95% confidence) are given at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $50 \% \pm 25 \% \mathrm{RH}$.
CS14 Through-hole and SMD

	Test conditions	Typical variation of Rn
Damp heat	500 h. at $40^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$	$\pm 20 \%$
Temperature Coefficient	16 h at $85^{\circ} \mathrm{C}$, plus 2 h at $-25^{\circ} \mathrm{C}$	$\pm 20 \%$
Load life	1.000 h. at $50^{\circ} \mathrm{C}$	$\pm 20 \%$
Mechanical life	15.000 turns at $10 \mathrm{c} . \mathrm{p} . \mathrm{m}$. and at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	$\pm 20 \%$
Storage (3 years)	3 years at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	$\pm 3 \%$

CS14 as alternative to a 4 bit absolute encoder. Linear curve.

A combination of a controlled linear curve and mechanical detents distributed along the 360° of the endless turn CS14 is an alternative to a 4-bit absolute encoder

Using the CS14 as a voltage divider, we can obtain 16 non-overlapping voltage values at each one of the 16 detents located evenly spread along the full circumference with a separation of 22.5° between each contiguous detent. See figure 1 .

Figure 1

The graph of the linear curve that provides this performance is in the figure 2. We call it the curve FP and it makes possible to differentiate 16 non-overlapping different voltage levels from the collector output pin. (B in figure 1)

The function of the detents is to position and fix the wiper contact on the surface of the linear taper. An electrical control of each one of the 16 detents of each individual potentiometer during the assembly process ensures that the voltage levels are correct in each one of them.

Figure 2
Curve FP

The endless rotation feature of the CS14 allows to move from the detent number 16 ($\mathrm{U} / \mathrm{Un}=100 \%$) to the detent number 1 ($\mathrm{U} / \mathrm{Un}=0 \%$). During the transition between these two detents, the wiper will slide on a dead zone for a few degrees, meaning that at that moment there will be no electrical contact with the resistive track.

In order to cope with this we recommend either to introduce a pull-up or pull-down resistor into the circuit design. ACP proposes the latter, a pull-down resistor whose value has to be at least 100 times the potentiometer nominal value. In that case, the collector pin output will be 0\% (U/Un) when the slider transits on the dead zone.

Figure 3

ACP standard configuration is a potentiometer of 10 K Ohm and a recommended pull-down resistor equal or greater than $1 \mathrm{M} \Omega$. (Figure 3). The mechanical life is 15.000 turns.

Connecting the collector terminal to the AD port of a microcontroller to feed into it the output voltage of such a configuration will allow for the selection of 16 different functions.

The table below (figure 4) shows the equivalence between the output function of this potentiometer, indicating the tolerance at each detent, and a 4-bit digital encoder signal.

An example of How to Order would be CS14NV15-10KFP3030 LV15 16DT RSN. Note that it is not necessary to indicate the linearity, as it is already implicit in the curve FP.

Detent	U/UN	Decimal	Hexadecimal	Binary	Octal
1	(0+2,27)\%	0	0	0000	0
2	$(5,68 \pm 3,41) \%$	1	1	0001	1
3	$(12,50 \pm 3,41) \%$	2	2	0010	2
4	$(19,32 \pm 3,41) \%$	3	3	0011	3
5	$(26,14 \pm 3,41) \%$	4	4	0100	4
6	$(32,95 \pm 3,41) \%$	5	5	0101	5
7	$(39,77 \pm 3,41) \%$	6	6	0110	6
8	$(46,59 \pm 3,41) \%$	7	7	0111	7
9	$(53,41 \pm 3,41) \%$	8	8	1000	10
10	$(60,23 \pm 3,41) \%$	9	9	1001	11
11	$(67,05 \pm 3,41) \%$	10	A	1010	12
12	$(73,86 \pm 3,41) \%$	11	B	1011	13
13	$(80,68 \pm 3,41) \%$	12	C	1100	14
14	$(87,50 \pm 3,41) \%$	13	D	1101	15
15	$(94,32 \pm 3,41) \%$	14	E	1110	16
16	(100-2,27)\%	15	F	1111	17

Figure 4

